==作者:YB-Chi==
[toc]
LRU
volatile-lru和allkeys-lru策略都用到了LRU算法。LRU算法的全称是Least Recently Used,从名字上就可以看出,这是按照最近最少使用的原则来筛选数据,最不常用的数据会被筛选出来,而最近频繁使用的数据会留在缓存中。
那具体是怎么筛选的呢?LRU会把所有的数据组织成一个链表,链表的头和尾分别表示MRU端和LRU端,分别代表最近最常使用的数据和最近最不常用的数据 。
如果有一个新数据15要被写入缓存,但此时已经没有缓存空间了,也就是链表没有空余位置了,那么,LRU算法做两件事:
- 数据15是刚被访问的,所以它会被放到MRU端;
- 算法把LRU端的数据5从缓存中删除,相应的链表中就没有数据5的记录了。
其实,LRU算法背后的想法非常朴素:它认为刚刚被访问的数据,肯定还会被再次访问,所以就把它放在MRU端;长久不访问的数据,肯定就不会再被访问了,所以就让它逐渐后移到LRU端,在缓存满时,就优先删除它。
不过,LRU算法在实际实现时,需要用链表管理所有的缓存数据,这会带来额外的空间开销。而且,当有数据被访问时,需要在链表上把该数据移动到MRU端,如果有大量数据被访问,就会带来很多链表移动操作,会很耗时,进而会降低Redis缓存性能。
所以,在Redis中,LRU算法被做了简化,以减轻数据淘汰对缓存性能的影响。具体来说,Redis默认会记录每个数据的最近一次访问的时间戳(由键值对数据结构RedisObject中的lru字段记录)。然后,Redis在决定淘汰的数据时,第一次会随机选出N个数据,把它们作为一个候选集合。接下来,Redis会比较这N个数据的lru字段,把lru字段值最小的数据从缓存中淘汰出去。
Redis提供了一个配置参数maxmemory-samples,这个参数就是Redis选出的数据个数N。例如,我们执行如下命令,可以让Redis选出100个数据作为候选数据集:
1 | CONFIG SET maxmemory-samples 100 |
当需要再次淘汰数据时,Redis需要挑选数据进入第一次淘汰时创建的候选集合。这儿的挑选标准是:能进入候选集合的数据的lru字段值必须小于候选集合中最小的lru值。当有新数据进入候选数据集后,如果候选数据集中的数据个数达到了maxmemory-samples,Redis就把候选数据集中lru字段值最小的数据淘汰出去。
LFU
LFU缓存策略是在LRU策略基础上,为每个数据增加了一个计数器,来统计这个数据的访问次数。当使用LFU策略筛选淘汰数据时,首先会根据数据的访问次数进行筛选,把访问次数最低的数据淘汰出缓存。如果两个数据的访问次数相同,LFU策略再比较这两个数据的访问时效性,把距离上一次访问时间更久的数据淘汰出缓存。
重点放在缓存污染里介绍
摘选自:极客时间-Redis核心技术与实战